
Honours Individual Project Dissertation

SESSION TYPES IN π-CALCULUS

Andrew Mcnab
March 26, 2019

i

Abstract

The π-calculus is a formal computational model for describing communicating and concurrent
processes, which has recently had a resurgence in popularity. Session types extend the π-
calculus with a type system. When students are taught the π-calculus with session types, they
rely on evaluating processes by hand, which is cumbersome. This work explores a language
based on the π-calculus, as well as an interpreter and type system implementation for it, which
could be used in teaching. Evaluation of the work showed that the language has promise for
teaching, although the interpreter could be made more user friendly.

i

Acknowledgements

I would like to thank my project supervisor, Dr Ornela Dardha, for her support and guidance
during the project.

i

Education Use Consent

I hereby grant my permission for this project to be stored, distributed and shown to other
University of Glasgow students and staff for educational purposes. Please note that you are
under no obligation to sign this declaration, but doing so would help future students.

Signature: Andrew Mcnab Date: 27 March 2019

ii

Contents

1 Introduction 1
1.1 Motivation and Objectives 1
1.2 Summary 1

2 Background 2
2.1 The π-calculus 2

2.1.1 Syntax 2
2.1.2 Semantics 2

2.2 Session Types 4
2.2.1 Syntax 4
2.2.2 Duality 5
2.2.3 Typing rules 5
2.2.4 Examples of the π-calculus With Session Types 6

2.3 ANTLR 7

3 Requirements 9
3.1 Functional Requirements 9
3.2 Non-functional Requirements 9

4 Design 11
4.1 Language 11
4.2 Interpreter 12
4.3 Type System 12

5 Implementation 13
5.1 Language 13
5.2 Interpreter 13
5.3 Type System 17

6 Evaluation 20
6.1 User study 20
6.2 Correctness 20
6.3 Usability 21
6.4 Effectiveness as a Learning Tool 22
6.5 Related Work 22

6.5.1 pi-calculus 22
6.5.2 JsonPi 22
6.5.3 SePi 23
6.5.4 GV 23

7 Conclusion 25
7.1 Summary 25
7.2 Future work 25

Appendices 26

iii

A Appendices 26
A.1 Pi-calc Grammar 26
A.2 User Guide 28
A.3 Ethics Approval 29
A.4 User Study Questionnaire 29

Bibliography 33

List of Figures 34

1

1 Introduction

1.1 Motivation and Objectives

When the π-calculus is taught to students, they have to rely on evaluating processes by hand.
This can be tedious for any example that is non-trivial, and is prone to errors. This also goes for
teaching session types, as writing out a type checking by hand can be time consuming. Because
of these reasons, an interpreter for the π-calculus with a session type based type system could be
used in helping students learn these topics.

The objectives of this work can be split in to two main sections. Firstly, to implement the
π-calculus as a programming language which is executable through software. This will include
a specification of the language, as well as an implementation of the language using an interpreter
to execute code written by a user. Secondly, the extension of session types will be added,
meaning implementing a type system within the implemented language. In addition to these
aims, significant examples will be constructed to demonstrate the language’s features and its
correctness.

1.2 Summary

This chapter motivated the project, and set out the aims of the work. The remainder of this
dissertation is structured as follows:

• Chapter 2 gives some background on the theory and tools used in this work, as well as
defining some examples that will be shown in the implementation later.

• Chapter 3 outlines the requirements of the work.
• Chapter 4 describes the design of the work, expanding on the requirements outlined in
Chapter 3.

• Chapter 5 describes the implementation of the language, interpreter, and type system.
• Chapter 6 evaluates the language, interpreter, and type system, and discusses if the aims of
the work were met.

• Chapter 7 outlines potential future work.

2

2 Background

2.1 The π-calculus

2.1.1 Syntax

The π-calculus is a formal computational model for describing communicating and concurrent
processes. The π-calculus was originally developed by Robin Milner, building on his previous
work on the Calculus of Communicating Systems (CCS) (Milner 1982). It has a very simple
construction, and its syntax can is described by the following Backus-Naur Form (BNF) grammar:

P ,Q ::= x̄ 〈y〉.P (output)
| x(y).P (input)
| P | Q (composition)
| (νx) P (channel restriction)
| (νxy) P (new session)
| x . {li : Pi }i ∈I (branch)
| x / lj .P (select)
| 0 (inaction)

Figure 2.1: Syntax of π-calculus processes with session types (Dardha et al. 2017, Fig.1).

In more detail, the input rule can be read in the following way:

• On channel x , receive some information
• Bind the result to y
• Continue to run P

Similarly for output, we send the value y on channel x , and continue to run P . The composition
rule allows us to run two processes P ,Q in parallel. Channel restriction (νx) P creates a new
channel, and restricts its scope to the process P . The branch, select, and new session processes are
included with session types. Branch allows us to define choices between processes, with each
process having a label, l . We can select a label with the select process, which executes the selected
process.

2.1.2 Semantics

The π-calculus has the prominent notion of names, which in Figure 2.1 are the symbols x , y.
We call x and x̄ co-names. In interactive behaviour, x and x̄ can be thought of as complimentary

3

x̄ 〈v〉.P | x(z).Q → P | Q[v/z] (R-StndCom)
(νxy) (x̄ 〈v〉.P | y(z).Q → (νxy) (P | Q[v/z]) (R-Com)
(νxy) (x / lj .P | y . {li : Pi }i ∈I) → (νxy) (P | Pj), j ∈ I (R-Case)
P → Q =⇒ (νx) P → (νx) Q (R-StndRes)
P → Q =⇒ (νxy) P → (νxy) Q (R-Res)
P → Q =⇒ P | R → Q | R (R-Par)

Figure 2.2: Semantics of the π-calculus with session types.

actions, each being one side of a communication between two agents. Together, x and x̄ represent
a channel, which allow communication between multiple agents.

The semantics of the language is defined by the relation→ over processes, which we call the
reduction relation. If P → Q , then we say P reduces to Q . The semantics of the π-calculus are
defined using the reduction relation in Figure 2.2. The rule (R-StndCom) defines communication
between channels, where if we have a matching send and receive in parallel, communication
occurs. The notation Q[v/z]means that we replace all occurrences of z in Q with v. For example,
the process x̄ 〈1〉.0 | x(y).0 is a composition of two processes, which allows communication by
(R-StndCom). In this example, the complimentary send and receive communicate, and the value
1 is bound to the name y. In this case, we write the following to notate the reduction (and
therefore communication):

x̄ 〈1〉.0 | x(y).0→ 0 | 0

An important feature of the π-calculus is mobility. Mobility is the concept of sending channels,
instead of specifically values. Mobility was a major addition to the π-calculus (Milner 1999) from
CCS (Milner 1982). A simple example of this is the process:

a(x).x̄ 〈5〉.0 | ā〈b〉.b(y).0

→ b̄〈5〉.0 | b(y).0
→ 0

As we can see, the first send over channel a sends the channel b, which is then used for the second
communication.

It should be noted that communication is the fundamental semantic of the calculus, as it allows
the transmission of information, but also permits variables through binding. For example, the in
reduction x̄ 〈3〉.0 | x(y).x̄ 〈y〉.0→ 0 | x̄ 〈3〉.0, we first send the value 3 over channel x , which is
then bound to the name y. By binding the value 3 to y, we can then use it in a later part of the
process, in this example sending it over x .

Branches give the option of choice between any number of processes, e.g. a math server
might have branches add, sub, and isEqual ; where each branch provides different behaviour.
The select process is used to choose from one of these branches, the semantic for branch and
select is (νxy)(x / lj .P | y . {li : Pi }i ∈I) → (νxy)(P | Pj), j ∈ I . It should be noted that the
process (νxy) P binds the channels x , y, so that communication occurs between them, instead of
requiring matching names in the non-extended π-calculus. As an example, (νxy) [x̄ 〈3〉.0 | y(z).0]
communicates, with z = 3 after communication. We can read the new session notation as
declaring x and y as dual endpoints.

4

Trans IdTrans

Control

Car

gain1

lose1

talk1

switch1

lose2

gain2

Idtrans Trans

Control

Car

gain1

lose1

switch2

talk2

lose2

gain2

Figure 2.3: The “car” system

A significant example of the π-calculus and mobility is the “car” system, as specified by Milner
(1999). The system models a car, which communicates with a transmitter. The car can switch to
a secondary transmitter, or talk with the primary transmitter. This system can be seen in the left
side of Figure 2.3. We define the system by each of its components:

Trans(talk, switch,дain, lose) B talk .Trans 〈talk, switch,дain, lose〉

+ lose(t , s).switch〈t , s〉.Idtrans 〈дain, lose〉

Idtrans(дain, lose) B дain(t , s).Trans 〈t , s,дain, lose〉

Control1 B lose1〈talk2, switch2〉.дain2〈talk2, switch2〉.Control2

Control2 B lose2〈talk1, switch1〉.дain1〈talk1, switch1〉.Control1

Car (talk, switch) B talk .Car 〈talk, switch〉

+ switch(t , s).Car 〈t , s〉

And the system together as a process of these components in parallel:

System1 B new talk1, switch1,дain1, lose1, talk2, switch2,дain2, lose2

(Car 〈talk1, switch1〉 | Trans1 | Idtrans2 | Control1)

where Transi B Trans 〈talki , switchi ,дaini , losei 〉 and Idtransi B Idtrans 〈дaini , losei 〉.

The transition shown in Figure 2.3 shows the car switching between the two transmitters, by
using mobility to send the new channels it would like to communicate on to the transmitter.

2.2 Session Types

2.2.1 Syntax

Session types (Vasconcelos 2012) specify the type and direction for communications in processes.
The BNF grammar for session types is specified in Figure 2.4. The syntax of types are categorised
into two groups: session types, and standard π-types which include session types. The session
type end is the type of a session endpoint which is terminated. The type ?T .S is the type of
a session endpoint which receives a value of type T , and then continues with session type S .
Similarly, !T .S denotes an endpoint which sends a value of type T and continuing with type S .
The branch session type is a set of labelled session types, allowing a choice between the labels.
Select allows us to choose a single label from those specified in a branch type.

5

S ::= end (termination)
| ?T .S (input)
| !T .S (output)
| ⊕ {li : Si }i ∈I (select)
| &{li : Si }i ∈I (branch)

T ::= S (session type)
| #T (channel type)
| Unit (unit type)
| ... (other constructs)

Figure 2.4: Syntax of session types (Dardha et al. 2017).

2.2.2 Duality

An important idea in session types is duality. Duality encapsulates the idea of the complimentary
actions in π-calculus, in a well-typed process, opposite endpoints (channels) will have types that
are dual to each other. Duality is defined inductively on a session type, the duality relation is
shown in Figure 2.5. From this definition, we can see that two channels that are dual to each
other will communicate (the dual of a send is a receive).

end ≡ end

!T .S ≡ ?T .S

?T .S ≡ !T .S

⊕{li : Si }i ∈I ≡ &{li : Si }i ∈I
&{li : Si }i ∈I ≡ ⊕{li : Si }i ∈I

Figure 2.5: The duality relation on session types (Dardha et al. 2017).

2.2.3 Typing rules

Session types are either linear or unrestricted. A session type T is linear if and only if T is a session
type, and T , end . If T is linear, we write lin(T). If a type is not linear, it is unrestricted. We have
un(Γ) ⇐⇒ @ T ∈ Γ such that lin(T). The typing rules for the π-calculus with session types are
given in Figure 2.6.

Session types provide some specification for a process, as the structure of the session type mirrors
the structure of the process it is typing. Although the session type gives the structure of a
process, the session type is for a channel, not a process. To illustrate this, let x :: ?int .!int .end , and
P = (νxy)[x(a).x̄ 〈a + 1〉.0 | ȳ〈3〉.y(b).0]. Here, channel x is given a session type, and channel y
is given the dual of that type. As the process reduces, the session types for the channel change.

6

(T-Var)
un(Γ)

Γ,x : T ` x : T

(T-Inact)
un(Γ)

Γ ` 0

(T-Par)
Γ1 ` P Γ2 ` Q

Γ1 ◦ Γ2 ` P | Q

(T-Res)

Γ,x : T ,y : T ` P
Γ ` (νxy) P

(T-StndRes)
Γ,x : T ` P T is not a session type

Γ ` (νx) P

(T-In)
Γ1 ` x :?T .S Γ2,x : S,y : T ` P

Γ1 ◦ Γ2 ` x(y).P

(T-Out)
Γ1 ` x :!T .S Γ2 ` v : T Γ2,x : S,y : T ` P

Γ1 ◦ Γ2 ◦ Γ3 ` x̄ 〈v〉.P

(T-Brch)
Γ1 ` x : &{li : Ti }i ∈I Γ2,x : Ti ` Pi

Γ1 ◦ Γ2 ` x . {li : Pi }i ∈I

(T-Sel)
Γ1 ` x : ⊕{li : Ti }i ∈I Γ2,x : Tj ` P ∃j ∈ I

Γ1 ◦ Γ2 ` x / lj .P

Figure 2.6: Typing rules for the π-calculus with session types (Dardha et al. 2017).

This is outlined in the typing rules, where each send or receive will remove the leading term in
the session type.

2.2.4 Examples of the π-calculus With Session Types

Enough theory has been built up to demonstrate a significant example of the π-calculus with
session types. Gay and Hole (2005) specified a mathematical server which offers a choice of
different mathematical operations. In this case addition, subtraction, and equality checking are
the options offered by the server. The session type for the server endpoint, x, is given by:

server B &{ plus :?int .?int .!int .end,
sub :?int .?int .!int .end,
eq :?int .?int .!bool .end }

The type of the client that will interact with the server is given by the dual of the server type:

server B ⊕{ plus :!int .!int .?int .end,
sub :!int .!int .?int .end,
eq :!int .!int .?bool .end }

The server itself is defined by the following process:

server B x . { plus : x(u).x(v).x̄ 〈u +v〉.0,
sub : x(u).x(v).x̄ 〈u −v〉.0,
eq : x(u).x(v).x̄ 〈u == v〉.0 }

7

There are many choices for a client, as we can select any of the three names given by the server,
and send any integer values. A possible client is given by:

client B y / plus .ȳ〈1〉.ȳ〈2〉.y(result : int).0

by the typing rule T-Sel, the client will be type checked against the dual of the type of the branch
selected, in this case, !int .!int .?int .end . The interaction between the server and client can be seen
by the following reductions:

(νxy)(server | client)

→ (νxy)(server | y / plus .ȳ〈1〉.ȳ〈2〉.y(result : int).0)
→ (νxy)(x(u).x(v).x̄ 〈u +v〉.0 | ȳ〈1〉.ȳ〈2〉.y(result : int).0)
→ (νxy)(x(v).x̄ 〈1 +v〉.0 | ȳ〈2〉.y(result : int).0)
→ (νxy)(.x̄ 〈1 + 2〉.0 | y(result : int).0) → 0

2.3 ANTLR

ANTLR (Another Tool for Language Recognition) is a tool, which given an extended Backus-
Naur form (EBNF) grammar, builds a lexer and a parser. As well as this, it provides a framework
for building programming languages by providing access to the parse tree generated by the
parser. It does this by building a listener (or alternatively, a visitor) which we can use with a
parse tree walker to traverse the parse tree and define behaviour. The workflow of the tool can be
summarised by the following steps:

1. Define a grammar
2. Generate the parser
3. Give the parser some input text
4. Using a listener or visitor, read the parse tree and define behaviour

An example of a parse tree can be seen in Figure 2.7, generated from the input text a<1>.zero.
This is using a grammar defined for this project, which very closely follows the grammar of the
π-calculus. The parse tree gives structure to the input, as defined in the grammar. Each node
represents a rule, and the leaves of the tree are the tokens (text that represents some construct in
the grammar, e.g. a variable name myVariable). In other words, the parse tree at a rule has
children which are exactly the subrules and tokens of that rule. In Figure 2.7, the rule send has
two child rules chan, sendable, and two child tokens < and >.
As previously mentioned, we can traverse this tree with a walker. A listener is a design pattern
where we define a method for each rule, and these are called by the walker. ANTLR creates an
abstract Listener for the grammar, and for every rule R in the grammar, it creates the methods
enterR(RContext ctx) and exitR(RContext ctx). The walker visits the parse tree in
pre-order, and at each node calls the corresponding method. The behaviour of the language is
then implemented in these methods. As an example, on entering a send node, we can implement
the behaviour that manages the communication with respect to that send. At each node, ANTLR
provides the context object which contains information about the current node, including the
children of the node.

A way we can view ANTLR projects is that for a language, the grammar defines the syntax, and
the listener implementation defines the language’s semantics.

8

Figure 2.7: An ANTLR parse tree generated from the π-calculus process "a<1>.zero"

9

3 Requirements

The requirements for the project are categorised by the MoSCoW method, that is a requirement
is assigned one of the four following categories:

• Must have
• Should have
• Could have
• Won’t have

3.1 Functional Requirements

Must have The most important functional requirement is an interpreter for the base π-calculus.
This means that given a file containing valid π-calculus, some software will execute it and provide
output, showing the communications as they occur.

Should have The language implementation should support some additional constructs to make
it more usable, such as let bindings. The implementation should also have a type system, based
on session types (Dardha et al. 2017).

Could have The interpreter could step through each reduction, for example for an input program
a<3>.zero | a(y).zero the following would be output:

a<3>.zero | a(y).zero
zero | zero (send 3 on a)
zero (inaction)
end of process (inaction)

Another feature that the project could have is support for the polyadic π-calculus, where multiple
values can be sent/received in a single send/receive process, e.g. ā〈1, 2, 3〉, which is equivalent
to the process ā〈1〉.ā〈2〉.ā〈3〉.

Won’t have A web application UI was suggested, but due to scope restrictions on the project
(particularly that it is worth 20 credits), this was not chosen as a requirement to implement.

3.2 Non-functional Requirements

Must have The interpreter must be semantically correct, valid π-calculus input must give the
expected output, as per the specification of the π-calculus. The overall product must be usable,
and accessible to anyone with a computing background - although not necessarily a background
with π-calculus. A related requirement is that the output must be clear and easy to understand,
as it is aimed as a learning tool.

10

Should have The interpreter should be portable, and a user should be able to run it on standard
hardware. It should also be error-resilient, in that invalid input should be dealt with in a
meaningful way rather than crash the program.

Could have The type system could have a structured output, showing the typing rules applied
and using whitespace to illustrate the structure of the process.

Won’t have Formally verifying the interpreter was discussed, by using a theorem prover such
as Coq. This requirement was categorised as a ‘won’t have’, as it would have added a significant
amount of work without necessarily adding much to the project.

11

4 Design

4.1 Language

Language design starts with a grammar, defining the syntax. There already exist many slightly
different grammars for the π-calculus, many of which are hard to write with a keyboard, for
example the grammar defined in Figure 2.1 would require the user to type a bar over a channel
name to send. An important part of the design of the language is that it should be easy for a user
to type a program in any text editor. Because of this, a grammar requiring no special characters
should be used.

The base π-calculus is very limited, only covering communication, parallel processes, and scope
restriction. To make the language usable, additional constructs need to be added, thus extending
the π-calculus. This is a big step towards a normal programming language, as it allows the user
to write complex programs in a clearer way. Constructs added include:

• let bindings, and the do keyword to define and run processes respectively.
• a non-deterministic choice operator P + Q, which runs either P or Q.
• brackets, e.g. [a<3>.zero] + [a<5>.zero].
• replication !P, which infinitely repeats a process P until no communications occur.
• a show statement, which takes a variable as an argument and prints the value of it to the
console.

Despite adding these constructs and making the π-calculus more abstract, an important design
decision was to not make it too abstract. In making the language too abstract, we might make it
too hard for those new to π-calculus, and therefore ineffective as a learning tool. The language is
intended to be as pure to the base π-calculus as possible, whilst still being usable as a programming
language.

The semantics of the language should be identical to the semantics in Figure 2.2. That is, given
any of the rules, the interpreter should behave in the same way. The chosen syntax for session
types is inspired from Dardha et al. (2017), which can be seen in the math server example.

server :: &{ plus :: ?int.?int.!int.end
, eq :: ?int.?int.!bool.end }

let server(x) = -> { plus: x(u).x(v).x<u+v>.zero
, eq: x(u).x(v).x<u==v>.zero }

let client(y) = select equal.y<3>.y<5>.y(eq :: bool).zero

(new x y)[do server(x) | do client(y)]

12

4.2 Interpreter

The interpreter must take a .pi file, and interpret it. This means that it must satisfy the semantics
outlined in figure 2.2. The interpreter must give meaningful output for the interpreted file,
which in the context of this work means showing the communications that occur, with the
channel the communication occurred on as well as the data communicated. An example output
for the input text a<3>.zero | a(x).zero is shown in the following snippet:

--> received on channel a: val 3
File finished execution

The design of the interpreter is chosen to be serial, rather than threaded. This may seem like
an odd choice given the π-calculus is fundamentally parallel, however a serial implementation
was chosen given the scope of the project, as a parallel implementation may be much harder to
develop and debug.

4.3 Type System

An approach of type checking was taken, meaning that the user must correctly type their programs
using type annotations, and the type system will verify if the program is well typed as a result of
the type annotations. To determine if a process is well typed or not, the rules defined in Figure
2.6 were used. The system involves pattern matching the correct rule and applying it, given the
process and type context Γ. Because the system type checks a process, for any type checking
we construct a tree starting at the bottom, where the root is the process and type context given,
with nodes of each rule, and leaves ending in un(Γ).

The system should be smart enough to infer the types of values, (e.g. in sending the value 3,
the type system should be able to tell that 3::int) so that the user does not have to annotate it
themselves. type checking occurs at runtime, at each time the interpreter enters a process. If a
process is well-typed it then executes, but if it does not type check and is therefore not well-typed
it is stopped from executing. If a process does not type-check, we then continue running the rest
of the program.

Error messages should be provided in the case of a non well-typed process, so that the type
system can be more useful to the user. An error would occur when one of the typing rules is not
satisfied. An example error message might be:

Error in type check: [T-In] Expected {!int} but got {?int} in process
{x(v).x<u+v>.zero}.

This message shows the user the rule that failed (T-In), the expected and actual types, as well as
the process the type check failed on.

13

5 Implementation

5.1 Language

The language was implemented using ANTLR. As mentioned in Section 4.1, the language is
designed to be as simple and close to the π-calculus as possible. A snippet of the grammar can be
seen in Listing 5.1. We can see that this gives the syntax for the base π-calculus, the extensions
given by session types, and the extensions added in this work. The full grammar for processes is
shown in listing A.1. The implementation of the language itself is simply an ANTLR grammar
file, as ANTLR builds the lexer and parser itself. The syntax chosen for the language is shown in
the table below:

π-calculus syntax Chosen syntax
x̄ 〈y〉.P x<v>.P
x(y).P x(y).P
(νx) P (new x)P
!P !P
0 zero
(νxy) P (new x y)P
x . {li : Pi }i ∈I x -> {l:P, ...}
x / lj .P x <- l.P

Subrules (such as send in Listing 5.1) were used to split up the process grammar, as well as
to allow for matching classes in the interpreter. An instance where this was used was storing
sends/receives in queues to be used later in the execution of a program. The syntax was chosen
such that it would be easy to type for a user. Particular parts of the grammar would be very
hard to write normally, for example the character ν (Greek ‘nu’) is not present on a standard UK
keyboard. Communication is the most important part of π-calculus, so the simplest syntax for
send and receive was chosen, while still being reminiscent of the standard π-calculus syntax.

5.2 Interpreter

The interpreter was implemented in Java. This was because Java is a target language of ANTLR,
so the implementation can use ANTLR to parse and provide some framework for interpreting.
The interpreter and language itself were implemented incrementally, starting with the very basics
of communication, with the aim of implementing the base π-calculus as well as the extensions
discussed in Section 5.1 as well as support for the extensions added with session types.

To create the serial implementation, some workarounds were required for interpreting the
parallel processes. For example, say we had a queue of processes sending (LinkedList send-
ingChannels) and a queue of processes receiving (LinkedList receivingChannels,
and if there’s a matching send/receive in the queue then do the communication, otherwise add it
to the queue. In this implementation, the process a<3>.a(y).zero would communicate with

14

proc: ’[’ p=proc ’]’ (SEQ proc)? # parens
| ZERO (SEQ proc)? # zeroProcess
| send SEQ proc # sendProcess
| receive SEQ proc # receiveProcess
| scopeRestrict proc # scopeRestriction
| REPL proc # replicate
| proc PAR proc # parallel
| proc ’+’ proc # choice
| ’do’ NAME (SEQ proc)? # doProc
| ’do’ NAME ’(’ args ’)’ (SEQ proc)? # doProcArgs
| newSession proc # sessionProcess
| chName=NAME SELECT
procName=NAME SEQ proc # selectProcess

| NAME BRANCH
’{’ (branch’,’)* branch ’}’ # branchProcess

;

Figure 5.1: Grammar of processes written in the ANTLR format.

itself, which is semantically incorrect. To get around this issue two memory objects were used,
a ‘temp’ and ‘main’ memory. Communications are added to the temp memory queue, and we
check for a matching communication only in the main memory queue.

Scope restriction is another non-trivial feature to implement. In the interpreter, scope restricted
names would get mapped to a name that does not exist. Uniqueness is guaranteed, for each
name the interpreter appends the character "ˆ" until the name is unique, for example a 7→ aˆ.
The character "ˆ" was chosen here, as it is not in the grammar, and so the user cannot type it
themselves. A list of scope restricted names are kept, so that we know when we have a unique
name and so that we use the correct one in the case of nested scope restrictions.

In implementing choice, some steps had to be taken to ensure the correct behavior. An example
parse tree is shown in Figure 5.2. The idea behind the current implementation is on entering
a choice, construct a list of all of the processes in the choice, adding them recursively. Then,
on exiting the choice, execute one of them non-deterministically. A problem with this imple-
mentation is that after entering the choice, the rest of the process will run normally. This is
because the tree will continue to be walked, so the sendProcess will be visited. To stop this
from happening, on entering the first choice we add all of the choices by using another method
(instead of walking the tree and adding on each choice), and once all of the choices are added,
delete all of the children of the first choice. By deleting the children, we ensure that those nodes
are not visited, and all of the information is kept by adding the choices to a list. Of course, an
ideal scenario would involve not mutating the parse tree, however ANTLR does not provide
functionality for not visiting certain parts of a tree.

Recursion was by far the most difficult feature of the language to implement. It was especially
difficult in the context of π-calculus, as the language allows infinitely recursing processes to run
in parallel, e.g. the following program will communicate forever:

let P = a<"hello">.do P
let Q = a(y).do Q
do P | do Q

15

Figure 5.2: The parse tree from input text "[a<1>.zero]+[a<2>.zero]".

Figure 5.3: The parse tree generated from input text "let P = a<3>.zero"

Recursion (in do processes only, not replicated processes !P) was implemented by choosing
selectively when to execute the recursive call. A process P is recursive if it contains the sub-process
do P. Choosing when to run the call starts by keeping a list of running processes. On entering
a do process, we first check if the name of the process is an element in the list, and if it is an
element we do not run it but instead add it to a list of recursive calls. If the name is not already
running, we add it to the list of running names, and continue walking the tree. When we exit a
do process, we then remove the name from the list of names. On exiting a line, we then run all
of the recursive calls in the list once. This permits infinite recursion, as when we exit the line,
running the recursive calls in the list will allow us to add the recursive call again.

A frequently used pattern in the interpreter is to avoid running some part of the parse tree, and
instead execute it later (usually if some predicate is true). An example of this is let/do statements,
where we do not want to run the process subtree of the let statement, shown in Figure 5.3, but
instead run it when we enter the do. If we did not delete the sendProcess subtree, the walker
would visit those parts of the tree, and in this case send on channel a. To implement this, I rely
on Java’s behaviour of adding to data structures like List and Map. On adding a context to
some data structure, it provides a deep enough copy that we can delete all children (to not visit
them), but also preserve all of the information of the node. To visit a saved context ctx, ANTLR
provides methods to enter and exit the rule, and we can also visit children of ctx with the code
snippet ctx.children.forEach(t -> walker.walk(this, t)).

To help ensure correctness, testing was used heavily during development. Unit testing (testing
single methods) is very difficult in ANTLR projects. The biggest issue is that in using a listener,
each enter and exit rule has a return type of void, so unit testing would not be as simple as
checking return values from entering a rule. Another problem with unit testing is that any
non-trivial program will require multiple rules to be visited, which detracts from the point of
unit testing, that is to only test the smallest units of the software. Instead, integration tests were
used. The approach taken was to write small programs, and measure the communications that

16

occur. This was a sensible approach, as in the π-calculus communications tell us everything about
the process. Each test program was designed to test specific expected behaviour, for example if a
replicated process communicated enough times, or recursion was functional.

To illustrate the correctness of the interpreter, consider the “car" system as outlined in Figure 2.3.
We can write this system in the language:

let trans(talk, switch, gain, lose) = [talk(x).do trans(talk, switch, gain,
lose).zero]+[lose(t).lose(s).switch<t>.switch<s>.do idtrans(gain, lose).zero]

let idtrans(gain, lose) = gain(t).gain(s).do trans(t, s, gain, lose).zero

let control1 = lose1<talk2>.lose1<switch2>.gain2<talk2>.gain2<switch2>.do
control2.zero

let control2 = lose2<talk1>.lose2<switch1>.gain1<talk1>.gain1<switch1>.do
control1.zero

let car(talk, switch) = [talk<"hello world!">.do car(talk, switch)] +
[switch(t).switch(s).do car(t, s)]

let trans1 = do trans(talk1, switch1, gain1, lose1)
let trans2 = do trans(talk2, switch2, gain2, lose2)

let idtrans1 = do idtrans(gain1, lose1)
let idtrans2 = do idtrans(gain2, lose2)

let system = (new talk1)(new switch1)(new gain1)(new lose1)(new talk2)(new
switch2)(new gain2)(new lose2)

[do car(talk1, switch1) | do trans1 | do idtrans2 | do control1]

do system

It should be noted that this system consists on recursive processes in parallel, and should infinitely
recurse with infinite output. The output will be different every time the file is ran, due to the
non-deterministic choice in the definition for An substring of an example output might be:

--> received on channel talk1: val "hello world!"
--> received on channel gain2: channel talk2
--> received on channel gain2: channel switch2
--> received on channel lose1: channel talk2
--> received on channel lose1: channel switch2

The interpreter is packaged as a jar file, using the maven build system. Also included is the rest
of the application, meaning the parser and type system, which together form the interpreter.
The usage is simple, we can interpret a file from the command line with java -jar pi.jar
[file]. Because the interpreter is written in Java, it is portable and runs on any machine with
Java.

17

5.3 Type System

The type system was implemented in Scala. Scala was chosen as it has some very useful features,
most notably its pattern matching system, as well as its ability to be integrated with Java projects.
The language allows us to pattern match anything, with a system similar to Haskell’s. In the
context of the type system, the pattern matching of Scala was used to match the typing rules
from Figure 2.6, as each ANTLR rule corresponded to exactly one typing rule.

To model a typing context Γ, Scala’s immutable.Map was chosen. The type definition
type TypingContext = immutable.Map[String, TypeContext] was used, map-
ping from a standard String to an ANTLR TypeContext. An immutable Map was chosen
over a mutable one so that the recursive calls would work properly, avoiding mutating the Map
in one rule, making another rule not type check when it should.

The type checker itself is simply a recursive function, def typeCheck(p: ProcContext,
gamma: TypingContext): Boolean, which is called from the interpreter on entering a
process. The function pattern matches p, and applies the relevant rule with the TypingContext.
An example case is to match the process (new x y :: typeName) P:

// T-Res
case p: SessionProcessContext => {

val xName: String = p.newSession().x.getText
val yName: String = p.newSession().y.getText
val T = gamma(p.newSession().typeName.getText)
val gamma1 = gamma + (xName -> T) + (yName -> dual(T)) -

p.newSession().typeName.getText

val result = typeCheck(p.proc(), gamma1)
result

}

We can see that this process rule (an ANTLR SessionProcessContext) corresponds to the typing
rule [T-Res], specifically the lower half of the rule. We extend gamma to have the types of x
and y, and remove the key/value pair of the type name to avoid the type context being linear at
the end of the type check. We then type check P in a recursive call with the extended gamma,
going from the lower half of the rule to the top half. The structure of the tree is identical to the
structure shown in the output of the type system.

Some of the rules have the form Γ1 ◦ Γ2 ` P , where ◦ denotes the disjoint union of Γ1 and Γ2. This
is known as a context split. In following the typing rules downwards, we simply start with the
two typing contexts and can union them to continue the proof. However, when constructing a
tree the other way, the inverse is not as simple. In other words, when type checking we have to
take a union of two or more contexts, and split it into two disjoint contexts, which each type
some process determined by the rule. In the implementation, unrestricted types (only the base
types, in the specific implementation of session types used here) can be safely added to all of the
typing contexts, as in the leaf rules we check un(Γ). This was implemented with the function
splitContext2. This function takes a list of channel names channels, and puts any keys
from the TypeContext which are an element in channels into one TypingContext, and
any others into a second TypingContext. If any element is unrestricted, add it to both.

Error messages were implemented with exceptions. If a rule was not satisfied due to one of the
predicates of that rule, an exception is thrown at that point. Using exceptions provides a cleaner
implementation, as we can have the recursive type checking (each check returns a boolean),

18

Figure 5.4: Output from the type system, with an error message where the type specified a channel sending
an int, but the channel instead sent a bool.

whilst allowing for helpful error messages. The exceptions are caught in the interpreter, where
the error messages are printed. An example error message can be seen in Figure 5.4.

Type inference (in sending) was implemented by matching text in the send. The exact regular
expression patterns from the parser were used to ensure correctness.

To help with learning session types, the user can choose to print labels of what is being type
checked. An example of this is shown in Figure 5.4. The labels provide the structure of the type
checking, and can also help with debugging if the user does not find the error messages helpful.

To demonstrate the type system, consider the math server example defined in Section 2.2. The
session type and process definitions, as well as the server-client process, are written in the language
as so:

@typecheck:labels
server :: &{ plus :: ?int.?int.!int.end

, sub :: ?int.?int.!int.end
, eq :: ?int.?int.!bool.end }

let server(x) = x -> { plus: x(u).x(v).x<u+v>.zero
, sub: x(u).x(v).x<u-v>.zero
, eq: x(u).x(v).x<u==v>.zero }

let client(y) = y <- plus.y<1>.y<2>.y(result::int).zero

(new x y :: server)[do server(x) | do client(y)]

Which when interpreted, results in the following output:

[t-res]
[t-par]

[t-doArgs]: server
[t-brch]

[branch: plus]
[t-in]
[t-in]

19

[t-out]
[t-inact]

[branch: sub]
[t-in]
[t-in]
[t-out]
[t-inact]

[branch: eq]
[t-in]
[t-in]
[t-out]
[t-inact]

[t-doArgs]: client
[t-sel]
[t-out]
[t-out]
[t-in]
[t-inact]

Process is well typed; continuing...
--> received on channel y: val 13
--> received on channel y: val 5
--> received on channel y: val 18

This shows the typing rules used, and notifies the user that the process is well typed. The
interpreter then continues to execute the process, showing the communications.

20

6 Evaluation

6.1 User study

To help evaluate the work, a user study was run. The study was designed to evaluate the following
aspects of the work:

• Correctness of the interpreter
• Usability of the language and interpreter
• Effectiveness as a learning tool

These were chosen as the focus of the study to evaluate the requirements as outlined in Chapter
3. The study was structured as follows:

• Give the user an introduction to the π-calculus
• Show the user through several example files, and get the user to interpret them
• Allow the user to edit the example files, or write their own to try the interpreter

During the final section, I would talk with the user about their thoughts as they write code,
similar to a ‘think-aloud’ methodology (JÃÿrgensen 1990). This was to try and determine if the
syntax was hard to understand, or if the output was confusing, as well as bringing up anything
else that may confuse the user.

The participants were categorised into two groups; those with experience of π-calculus, and
those without. Each of the participants had a background in computer science. These groups
were equal in size, with four students in each group. As some of the users targeted in the study
had either no experience, or very little experience, the introduction aimed to show the most
important constructs of the π-calculus. The example files were structured in such a way that it
would progressively introduce concepts in the language to the user. The first file showed a simple
communication: (new a)[a<"hello, world!">.zero | a(x).zero]. The concepts
introduced in order were: sequential communication, mobility, session communication with
types, branch/select, and recursion.

Allowing the user to write their own programs in the language was included with the aim to
find bugs in the interpreter, as especially those without prior experience with π-calculus will
likely write erroneous input, thus highlighting bugs in the interpreter.

Significant results of the user study will be shown in the following sections.

6.2 Correctness

Correctness was continually checked during implementation. As mentioned in Section 5.2, this
was achieved by integration testing. However, some bugs were highlighted during the user study.
As an example, sending the value 0 caused a parse error, due to the ANTLR grammar not being
precise enough; the regular expression for the zero process and the number zero coincided. This
was a simple fix, by changing the original regular expression for the zero process from ZERO

21

: ’0’ | ’zero’ to simply ZERO : ’zero’. Although this bug was identified and easily
fixed, it shows that there are likely to be more bugs in the implementation, which may be more
subtle. It also shows that the integration test suite was not comprehensive enough, although it
was expected that the test suite would not completely verify the implementation. As mentioned
in Section 3.2, a theorem prover such as Coq could have been used to verify the implementation,
however this would have been a significant task, and outside of the scope allowed by the project.

An example of a more subtle bug that was highlighted in the evaluation is in the implementation
of the choice process. The semantic defining the choice operator as written by Milner (1999) is
given by ā〈x〉.P +R | a(y).Q + S → ā〈x〉.P | a(y).Q . In the implementation however, the choice is
completely non-deterministic, that is to say that there is no guarantee that two chosen processes
in parallel can communicate.

Although the test suite was not comprehensive, it did cover a significant portion of the π-calculus,
verifying the absolute basics of the language, as well as some ‘edge cases’, for example two
restricted names in parallel should not communicate. A more formal approach to the project
might have avoided these implementation bugs, a formal workflow would have been:

• Define the grammar (syntax)
• Define the semantics
• Implement these semantics exactly

However, this workflowwould have been difficult given the use of ANTLR to build the interpreter.
A possible way to implement the interpreter in this way would have been similar to the type
system implementation, by using structural pattern matching to match the reduction rule and
implementing the rule in code.

6.3 Usability

One of the aims of the work is that the language must be close to Milner’s π-calculus, but with
added constructs for usability. Feedback from the user study showed that the implemented
language was very ‘pure’, however could benefit from more constructs outside of those specified
in Section 4.1. Another suggestion to help make the language more usable was adding some
syntactic sugar, particularly if/else statements and loops. I personally think this would be a useful
addition, which would still be pure enough in the context of the π-calculus, and as the target
userbase would be computing science students these constructs would not require additional
learning. A different balance might need to be struck between simplicity and additional constructs.

The language does not support many mathematical operations. This was mostly because I was
focused on implementing the core functionality to get the two significant examples (the math
server and car system) working. Implementing further operations would not require a significant
amount of work, and would add significant functionality to the language.

An issue that many of the users brought up was that the interpreter’s error messages were lacking.
The implementation did not focus on error messages, and if the user gave an input with a syntax
error, the interpreter would simply exit. This was a problem for new users, as when they were
learning the language they may make a subtle error, for example missing the zero process at the
end of a process.

Feedback from the user study showed that output from the type system was very clear. In
particular, the labels were useful in debugging, as they could be used alongside the error message
to debug a type error.

22

6.4 Effectiveness as a Learning Tool

Overall, data from the user study showed that for users with no experience of π-calculus, the
language and interpreter helped their understanding of the π-calculus. Users liked the error
messages and output from the type system, and overall the response from the questionnaire
implies that these features helped understanding of the π-calculus and the session type extension.
Further user studies would be required to gain a deeper insight into the effectiveness of the tool
for learning. If time had permitted, students currently learning the π-calculus would have been
targeted for the user study.

6.5 Related Work

This section will discuss some related work over π-calculus interpreters and projects using session
types.

6.5.1 pi-calculus

Pi-calculus (renzyq19 2014) is an interpreter for a small language based on the applied π-calculus.
The aim of the project is to provide an implementation of the applied π-calculus such that web
protocols can be executed with existing implementations. The language uses haskell-like syntax.
An example program in pi-calculus can be seen in the following example, which communicates a
single message:

let client =
out(stdout,"Enter Host"); in(stdin,host);
out(stdout,"Enter Port"); in(stdin,port);

let ch = chan(host,port) in
in(stdin,msg);out(ch,msg);in(ch,msg)

let server =
out(stdout,"Enter Port");
in(stdin,port);

let ch = {port} in
in(ch,msg);in(stdin,reply);out(ch,reply)

As we can see, the syntax is abstracted the standard π-calculus, and requires a lot of boilerplate
for a simple communication. For receiving, instead of x(y) the language uses in(x, y), which
is not in the standard π-calculus grammar.

Despite the more complicated syntax, pi-calculus has great potential for application, and can be
used to model complex processes such as the handshake protocol used in cryptography.

6.5.2 JsonPi

JsonPi (Braun 2018) is a π-calculus interpreter. It uses syntax very close to the definition given
by Milner (1999), for example the simple communication is written:

world<hello>; | world(message);

23

where ; represents the zero process in π-calculus. The language allows any valid JSON for names,
so that we can send arbitrary JSON in communications. It even allows for branching through
structural pattern matching, for example in the following snippet, which behaves similarly to
Java’s switch statement:

choose
when x(a) then ;
when y(b) then z;
when [c=d]x<e> then y(f);
default z(g);

end

Other features include replication (!P), conditional execution ([a=b]P - if a=b then do P), let
binding (let P = x<a>;), and modules to allow structure in large projects.

6.5.3 SePi

SePi is a language utilising session types. Session types are written in the language with identical
syntax to Dardha et al. (2017), for example to describe a channel that receives an integer then
stops, we write ?integer.end. The syntax for sending and receiving in processes is a!x and
a?y respectively. The language supports the branch and select processes from session types, an
example showing a branch and select in parallel is shown in the following snippet:

new w r: +{setDate: end, commit: end}
w select setdate |
case r of setDate -> printString!"Got setDate"

commit -> printString!"Got commit"

which selects the branch setDate and executes it. The syntax is close to, but not exactly, the
syntax in the definition of session typed π-calculus.

SePi also supports recursive types, which could be used for example in a server that offers many
branches, and allows any number of clients to communicate with it. This is a useful addition to
session types, as without it a server could only communicate once in a single session.

6.5.4 GV

‘GV’ is a multithreaded functional language with session types (Gay and Vasconcelos 2010). The
syntax of session types is that of the syntax defined by Dardha et al. (2017). The syntax of the
language itself is similar to Haskell. An example of the language is shown with an online shop.
The type of the shop server is given by the session type:

Shop = &〈add :?Book .Shop, checkout :?Card .?Address .end〉

The type of a shopper client is the dual of this, given by:

Shopper = ⊕〈add :!Book .Shopper , checkout :!Card .!Address .end〉

24

The language uses the notation 〈Shop〉a to show that Shop is capable of accepting connections, and
〈Shopper 〉r to show that the shopper can request a connection.
The shop is implemented by a recursive function:

shop :: 〈Shop〉a → end
shop shopAccess = shopLoop (accept shopAccess) emptyOrder

shopLoop :: Shop → Order → end
shopLoop s order =

case s of {
add =⇒ λs.let (book, s) = receive s in

shopLoop s (addBook book order)
checkout =⇒ λs.let (card, s) = receive s in

let (address, s) = receive s in s
}

Although this language supports session types, the syntax of the language is far abstracted from the
π-calculus. The syntax would also likely be confusing for those without experience in functional
languages.

25

7 Conclusion

7.1 Summary

The aim of this work was to design and implement a programming language based on the
π-calculus with session types, which could be used in teaching. This was split into three main
objectives, which were designing and implementing the programming language, implementing
an interpreter for the language, and implementing a type system for the language based on the
specification of session types. ‘Pi-calc’ is the language designed and implemented in the work,
which is bundled as a Java application containing the parser, interpreter, and type system.

The evaluation has shown that the language is an effective interpreter of the π-calculus with
session types, and has promise for being used in education. More language constructs could help
to make the language more usable, but a balance between purity and syntactic sugar should be
found.

7.2 Future work

The most significant suggestion for future work would be to rework the interpreter to directly
apply reductions, rather than traversing ANTLR’s generated parse tree. As mentioned in Section
6.2, I believe that implementing the exact semantics defined in Figure 2.2 would avoid any bugs
in interpreting processes. This approach would also make implementing the requirement of
showing reductions described in Section 3.1 much easier, as the interpreter could apply each
reduction stepwise.

Another important suggestion is error messages in the parser. In the event of a parse error, the
interpreter will not give any information about what the parse error was, which is unhelpful for
any users but especially for those learning π-calculus.

A different approach in the interpreter may be to have a threaded implementation rather than a
sequential, that is to have each process in a parallel composition running as its own thread. This
would make sense given the parallel nature of the π-calculus, and could make implementation of
communication easier, if a reduction-driven approach was not taken. This is how Golang imple-
ments goroutines (Ajmani 2014), which are similar to π-calculus processes, although sequential
implementations also exist.

The language would benefit from more constructs to aid usability, as the language is possibly
too pure. This might include if statements in the form [x = y] P , where P is executed if and
only if x = y. As well as control flow constructs, a useful addition would be more mathematical
operations, which would extend functionality and allow for more significant programs to be
executable by the interpreter.

Given more time, formally verifying the language using a theorem prover may be useful work.
However, this would be a significant undertaking, and may be excessive given the intended
audience of students. If this work was intended to be used in a more formal setting, such as
verifying π-calculus models work as intended, this would be an important addition.

26

A Appendices

A.1 Pi-calc Grammar

proc
: ’[’ p=proc ’]’ (SEQ proc)? # parens
| ZERO (SEQ proc)? # zeroProcess
| send SEQ proc # sendProcess
| receive SEQ proc # receiveProcess
| scopeRestrict proc # scopeRestriction
| REPL proc # replicate
| proc PAR proc # parallel
| proc ’+’ proc # choice
| ’do’ NAME (SEQ proc)? # doProc
| ’do’ NAME ’(’ args ’)’ (SEQ proc)? # doProcArgs

/* --------------------Session types-------------------- */
| newSession proc # sessionProcess
| chName=NAME SELECT
procName=NAME SEQ proc # selectProcess

| NAME BRANCH
’{’ (branch’,’)* branch ’}’ # branchProcess

/* --- */
;

type
: sessionType # sessionTypeT
| baseType # baseTypeT
;

sessionType
: ’end’ # stEnd
| ’?’ baseType SEQ sessionType # stRec
| ’!’ baseType SEQ sessionType # stSend
| ’&’ ’{’ (branchType ’,’)* branchType ’}’ # stBranch
| ’+’ ’{’ (branchType ’,’)* branchType ’}’ # stSelect
;

baseType
: ’int’ # intT
| ’str’ # strT
| ’bool’ # boolT
;

branchType
: label=NAME ’::’ type
;

27

args
: (NAME’,’)* NAME
;

branch
: label=NAME ’:’ proc
;

send
: name=chan ’<’ sendable ’>’
;

sendable
: val # sendVal
| ’var’ var # sendVar
| chan # sendChan
| expression # sendExpression
;

expression
: NAME ’+’ NAME # addExpression
| NAME ’-’ NAME # subExpression
| NAME ’==’ NAME # eqExpression
;

receive
: name=chan ’(’ var (’::’ type)? ’)’
;

scopeRestrict
: ’(’ NEW name=chan ’)’
;

newSession
: ’(’ NEW x=chan y=chan ’::’ name=NAME ’)’
;

val
: INT
| STRING
| bool
;

bool
: TRUE
| FALSE
;

chan
: NAME
;

var
: NAME
;

Listing A.1: The .g4 grammar of processes in pi-calc

28

A.2 User Guide

Written by Andrew M - 2193329m@student.gla.ac.uk

**Found a bug or a program that doesn’t run as expected? Please send me an email
or talk to me!** Including whatever .pi was run would be useful for me :)

Download latest jar:

**You should probably run this on a lab machine - this is built using a public
gitlab runner and I’m not sure how secure they are.** Alternatively, you can
compile everything yourself by running ‘mvn package‘ in the root (mvn ==
maven), the jar is located in ‘target/pi.jar‘.

Running the interpreter:

- ‘java -jar pi.jar [file.pi]‘

Writing ‘.pi‘ files:

The following grammar gives the main functionality:

‘‘‘
file = line*

line = process | statement

process = [process] # brackets
| zero # zero process, 0
| chan<val>.process # send val on chan
| chan(variable).process # receive on chan, bind result to variable
| (new chan) process # scope restriction
| !process # process replication
| process | process # parallel

statement = show var # prints the value of variable var
‘‘‘

Comments are started with a single ‘#‘.

Example programs

(Output is prepended with ‘>‘)

Basic send and recieve in parallel
‘‘‘
a<3>.zero|a(x).zero
show x

> --> received on channel a: 3
> x=3
‘‘‘

Multiple send/receives
‘‘‘
b<5>.b<3>.b<4>.zero|b(x).b(y).b(x).zero

29

show x
show y

> --> received on channel b: 5
> --> received on channel b: 3
> --> received on channel b: 4
> x=4
> y=3
‘‘‘

Sending a channel
‘‘‘
a(x).x<5>.zero|a.b(y).zero # send the chan b on a
show y

> --> received on channel a: b
> --> received on channel b: 5
> y=5
‘‘‘

Replication
‘‘‘
a(x).a(y).zero|!a<"hello">.zero
show x
show y

> --> received on channel a: "hello"
> --> received on channel a: "hello"
> x="hello"
> y="hello"
‘‘‘

A.3 Ethics Approval

A.4 User Study Questionnaire

30

31

32

33

7 Bibliography

S. Ajmani. Go concurrency patterns: Pipelines and cancellation. https://blog.golang.
org/pipelines, 2014. Go statements, Accessed 22/3/2019.

G. Braun. Jsonpi. https://github.com/glenbraun/JsonPi, 2018. Accessed 16/3/2019.

O. Dardha, E. Giachino, and D. Sangiorgi. Session types revisited. Information and
Computation, 256:253 – 286, 2017. ISSN 0890-5401. doi: https://doi.org/10.1016/j.
ic.2017.06.002. URL http://www.sciencedirect.com/science/article/pii/
S0890540117300962.

S. Gay and M. Hole. Subtyping for session types in the pi calculus. Acta Informatica, 42(2):
191–225, Nov 2005. ISSN 1432-0525. doi: 10.1007/s00236-005-0177-z. URL https:
//doi.org/10.1007/s00236-005-0177-z.

S. J. Gay and V. T. Vasconcelos. Linear type theory for asynchronous session types. Journal of
Functional Programming, 20(1):19âĂŞ50, 2010. doi: 10.1017/S0956796809990268.

A. H. JÃÿrgensen. Thinking-aloud in user interface design: A method promoting cognitive
ergonomics. Ergonomics, 33, 04 1990. doi: 10.1080/00140139008927157.

R. Milner. A Calculus of Communicating Systems. Springer-Verlag, Berlin, Heidelberg, 1982.
ISBN 0387102353.

R. Milner. Communicating and Mobile Systems: The pi-Calculus. Cambridge University Press,
1999.

renzyq19. pi-calculus. https://github.com/renzyq19/pi-calculus, 2014. Accessed
16/3/2019.

V. T. Vasconcelos. Fundamentals of session types. Information and Computation, 217:52 – 70,
2012. ISSN 0890-5401. doi: https://doi.org/10.1016/j.ic.2012.05.002. URL http://www.
sciencedirect.com/science/article/pii/S0890540112001022.

https://blog.golang.org/pipelines
https://blog.golang.org/pipelines
https://github.com/glenbraun/JsonPi
http://www.sciencedirect.com/science/article/pii/S0890540117300962
http://www.sciencedirect.com/science/article/pii/S0890540117300962
https://doi.org/10.1007/s00236-005-0177-z
https://doi.org/10.1007/s00236-005-0177-z
https://github.com/renzyq19/pi-calculus
http://www.sciencedirect.com/science/article/pii/S0890540112001022
http://www.sciencedirect.com/science/article/pii/S0890540112001022

34

7 List of Figures

2.1 Syntax of π-calculus processes with session types (Dardha et al. 2017, Fig.1). 2
2.2 Semantics of the π-calculus with session types. 3
2.3 The “car” system 4
2.4 Syntax of session types (Dardha et al. 2017). 5
2.5 The duality relation on session types (Dardha et al. 2017). 5
2.6 Typing rules for the π-calculus with session types (Dardha et al. 2017). 6
2.7 An ANTLR parse tree generated from the π-calculus process "a<1>.zero" 8

5.1 Grammar of processes written in the ANTLR format. 14
5.2 The parse tree from input text "[a<1>.zero]+[a<2>.zero]". 15
5.3 The parse tree generated from input text "let P = a<3>.zero" 15
5.4 Output from the type system, with an error message where the type specified a

channel sending an int, but the channel instead sent a bool. 18

	Introduction
	Motivation and Objectives
	Summary

	Background
	The -calculus
	Syntax
	Semantics

	Session Types
	Syntax
	Duality
	Typing rules
	Examples of the -calculus With Session Types

	ANTLR

	Requirements
	Functional Requirements
	Non-functional Requirements

	Design
	Language
	Interpreter
	Type System

	Implementation
	Language
	Interpreter
	Type System

	Evaluation
	User study
	Correctness
	Usability
	Effectiveness as a Learning Tool
	Related Work
	pi-calculus
	JsonPi
	SePi
	GV

	Conclusion
	Summary
	Future work

	Appendices
	Appendices
	Pi-calc Grammar
	User Guide
	Ethics Approval
	User Study Questionnaire

	Bibliography
	List of Figures

